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Background and Motivation

Primary and Secondary objects in a close encounter are described by:
-Position (Relative Position)

-Velocity
-Covariance matrix (region of uncertainty)
-Hard-body radius (HBR) (circumscribing radii)
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— Encounter Plane

Combined covariance ellipsoid shell

If relative motion in the encounter region is linear, the problem can be
reduced to a two-dimensional integral by integration and projection.
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situational awareness. (Collision Tabe)

\ Combined spherical object

Relative Velocity

GOAL: Investigate and construct an autonomous architecture using physics-based statistical parameters via supervised-

machine learning and deep neural networks for intelligent and reliable autonomous satellite collision avoidance decision-
2

making.



Astrodynamics

Newton’s laws of universal gravitation

and laws of motion
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Machine Learning for Space Situational Awareness
Using Fuzzy Inference System (FIS)

Initial Mamdani FIS Design (2-dim)

Two spacecraft at Time
of close approach (TCA)
(500 simulated cases)
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Statistical Parameters

Probability of Collision

Miss Distance

—>

Mahalanobis Distance

Bhattacharyya Distance

Kullback-Leibler Distance etc.
Summer Internship work (Partial) by

Evana Gizzi (Tufts University)

Mitch Zielinski (Purdue University)
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Machine Learning for Space Situational Awareness
Using Deep Neural Networks

Preliminary overall
performance was
Two spacecraft at Time ~92% accurate

Of Close approaCh (TCA) Training: R=0.91763 Validation: R=0.93199
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Artificial Intelligence for Space Situational Awareness and Space Traffic
Management

21,000- 2.
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Intelligent data analytics can help
us understand and augment
problem-solving techniques

beyond our current capabilities.

(1) https://media.defense.gov/2017/0ct/04/2001822339/-1/-1/0/171004-F-03755-1003.JPG 6
(2) https://www.isdi.education/es/isdigital-now/blog/actualidad-digital/dealing-big-data-and-analytics
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Machine Learning for State Uncertainty Characterization
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